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Abstract. The one-dimensional (1D) electron gas model in the strong coupling regime is
considered. It is shown that this model is Bethe ansatz solvable and the exact spectrum of
the Hamiltonian is obtained. The massive spin elementary excitations are established based
on the Bethe ansatz equations. The magnetization near the onset at zero temperature and the
low-temperature thermodynamics are calculated.

1. Bethe ansatz equations

1D electron systems have been studied extensively in the past three decades and many
interesting exact results had been obtained both via bosonization techniques [1–3] and
the Bethe ansatz [4, 5]. Another important method to approach 1D systems is the
renormalization group theory which, with the so-called ‘g-ology’, groups the 1D electron
systems into a few universal classes [6, 7]. Theg-ology includes a few constants (functions)
to describe the interactions among the electrons.g4 andg2 describe the forward scattering
processes of the electrons with the same moving direction and different moving directions,
respectively;g1 describes the backward scattering across the two Fermi points andg3 the
4kF (Umklapp) process. In the unhalf-filled systems, the 4kF process is highly oscillatory
and is often omitted.g4 only induces the renormalization of the Fermi velocity or other
parameters [6]. It does not affect the fixed point physics of the system and can also be
omitted. Usually,gi ’s are also labelled with‖ and ⊥ to describe the spin-parallel and
spin-opposite scattering processes.

In this paper, we consider the 1D electron interacting model in the strong coupling
regime. This problem was first considered by Luther and Emery via bosonization. Exact
results were obtained in their paper [3] for a very special model. In this case, the backward
scattering becomes relevant and it opens a gap in the spin excitation spectrum. The system,
in the language of renormalization group theory, will never flow to the Luttinger liquid
fixed point. The Hamiltonian we shall consider reads

H =
∫ {

− i
∑

β=±1

∑
s=±1

βc
†
βs(x)

∂

∂x
cβs(x) + g2

∑
ss ′

c
†
1sc

†
−1s ′c−1s ′c1s

−g1‖
∑

s

c
†
1sc1sc

†
−1sc−1s + g1⊥

∑
s

c
†
1sc

†
−1−sc−1sc1−s

}
dx (1)
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whereβ = ±1 denotes the chiral indices of the electrons ands = ±1 denotes the spin
components of the electrons;c

†
βs (cβs) is the creation (annihilation) operator of electrons.

For simplicity, we have put the Fermi velocityvF = 1. This model is just the anisotropic
case of the chiral Gross–Neveu model which was solved by Andrei and Lowenstein [8] and
independently by Belavin [9]. The present model is also Bethe ansatz soluble.

The exact solution for the eigenstates and eigenvalues of Hamiltonian (1) can be obtained
within the framework of the Bethe ansatz method [10]. The central object of this method
is the two-particle scattering matrixS which is calculated from the two-particle processes
described by the Hamiltonian (1):

Sij =
{

exp{ 1
4i(αi − αj )[2g2 − g1‖ − g1‖σ z

i σ z
j + g1⊥(σ x

i σ x
j + σ

y

i σ
y

j )]} for αi 6= αj

pij for αi = αj

(2)

whereαi,j = ±1 are the chiralities of the momenta andσ is the Pauli matrix.pij is the spin
exchange operator. The system is integrable as the two-particle scattering matrix (2) satisfies
the Yang–Baxter equation [4, 11]. Furthermore, there are no genuineN -particle scattering
processes forN > 3 due to theδ-function form of the interactions in (1). Therefore the
mathematical conditions for eigenstates of (1) in the form of the Bethe ansatz are satisfied.
For details we refer the reader to the literature. TheS-matrix (2) can be factorized as
follows:

Sij = ei(αi−αj )φ [ω0 + ωzσ
z
i σ z

j + ω⊥(σ x
i σ x

j + σ
y

i σ
y

j )] (3)

with

φ = 1
4i(2g2 − 2g1‖ − g1⊥) ω0 − ωz = sin [(αi − αj )f ]

sin [(αi − αj )f + iµ]

2ω⊥ = i sinhµ

sin [(αi − αj )f + iµ]
ω0 + ωz = 1 (4)

and

coshµ = cosg1‖
cosg1⊥

cot2 2f = sin2 g1‖
sin(g1⊥ − g1‖) sin(g1‖ + g1⊥)

. (5)

Above we have put|g1‖| < |g1⊥| 6 π/2. In this case, the conditionf/µ > 0 is satisfied.
For finite systems, suitable boundary conditions have to be imposed, e.g. periodic ones. In
this case, the momentumkj of each electron is subject to certain quantization conditions
involving the total scattering phase upon other particles. This leads to the diagonalization
problem of products of scattering matrices solved by a subsequent Bethe ansatz [4]. The
result is given in terms of spin rapiditiesλα and the nested Bethe ansatz equations

eikj L = e2iN−φ
M∏

γ=1

sin[λγ − f + 1
2iµ]

sin[λγ − f − 1
2iµ]

eiqlL = e−2iN+φ
M∏

γ=1

sin[λγ + f + 1
2iµ]

sin[λγ + f − 1
2iµ]{

sin[λγ − f + 1
2iµ]

sin[λγ − f − 1
2iµ]

}N+ {
sin[λγ + f + 1

2iµ]

sin[λγ + f − 1
2iµ]

}N−

= −
M∏

δ=1

sin[λγ − λδ + iµ]

sin[λγ − λδ − iµ]
(6)

where thek’s (q ’s) are the momenta carried by the right (left) going electrons and theλ’s
are the rapidities of spins.N+ (N−) is the number of right (left) going electrons.L denotes
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the length of the system. Generally we putN+ = N− = N, N/L = D. The eigenenergy
defined by{kj , ql, λγ } is

E =
∑

j

2π

L
n+

j −
∑

l

2π

L
n−

l + D
∑

γ

[2(3γ − f ) − 2(λγ + f ) − 2π + 2µ] (7)

where n±
j are integers or half odd integers denoting the charge quanta;2(x) =

−2 arctan(coth(µ/2) tanx). Note the irrelevant constant 2(N+ + N−)φ has been omitted
in equation (7) and we have taken the Landre factor of the electrons as 1− µ/π for the
anisotropy [10].

2. Ground state and elementary excitations

For the ground state, alln±
j ’s are consecutive numbers and allλ’s are real. In the

thermodynamic limitL → ∞, N+/L = N−/L → D, from equation (6) we deduce that the
density ofλ, e.g.σ0(λ), satisfies the following integral equation

N [a1(λ − f ) + a1(λ + f )] = σ0(λ) +
∫ π

−π

a2(λ − λ′)σ0(λ
′) dλ′ (8)

with

an(λ) = 1

π

sinh(nµ)

cosh(nµ) − cos(2λ)
. (9)

We denote the Fourier transformation of a functiong(λ) in the interval(−π, π ] as

g̃(m) =
∫ π

−π

g(m)eimλ dλ m = integer. (10)

From equation (8) we have

σ̃0(m) = N cos(mf )

cosh(mµ/2)
(11)

which gives the total spin of the ground state as

S = N − σ̃0(0) = 0 (12)

and the density ofλ for the ground state

σ0(λ) = N

2π

∞∑
m=−∞

e−imλ cos(mf )

cosh(mµ/2)
. (13)

Equation (13) can be expressed by the Jacobian elliptic function dn(x).
The more physically interesting objects are the elementary excitations. From

equation (7) we see that the charge and spin excitations can be separately described while
the charge subsector behaves as a non-interacting spinless fermion system and the only
non-trivial excitations are the spin ones. There are two types of spin excitations. One is the
spin triplet which can be obtained by putting two holes in theλ sea of the ground state. The
other is the spin singlet which can be described by a 2-string ofλ and two holes. First, we
consider the spin triplet state. In this case, the density ofλ satisfies the following integral
equation:

N [a1(λ − f ) + a1(λ + f )] = σ(λ) +
2∑

i=1

δ(λ − λh
i ) +

∫ π

−π

a2(λ − λ′)σ (λ′) dλ′ (14)
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with λh
i the position of theith hole. Through Fourier transformation we have

δσ̃ (m) = σ̃ (m) − σ̃0(m) = − eimλh
1 + eimλh

2

1 + exp(imµ)
. (15)

The excitation energy1E is then given by

1E = D

2π

∞∑
m=−∞

∫ π

−π

dλe−imλ eimλh
1 + eimλh

2

1 + exp(imµ)
[2π − 2µ − 2(λ − f ) + 2(λ + f )]. (16)

It is very hard to calculate the infinite summation in equation (16) directly. However, in
the present model we can take the scaling limitD → ∞, µ → 0, πλh

i /µ → χh
i and keep

Tk = De−πf /µ finite as in the Kondo model [12]. It has been demonstrated in [12] that, at
least to the leading term, such a scaling scheme coincides with the conventional lore. In
this case, we can replace the summation

∑
m by 1

µ

∫
d(µm). The final result is

1E = 4Tk coshχh
1 + 4Tk coshχh

2 . (17)

The above procedure can be applied to the multi-hole case. The excitation energy is just
the summation of those of single holes. Also, the spin singlet excitation can be obtained
by the same procedure. In this case,σ(λ) satisfies

N [a1(λ − f ) + a1(λ + f )] = σ(λ) +
2∑

i=1

δ(λ − λh
i ) +

∫ π

−π

[σ(λ′) + σs(λ
′)]a2(λ − λ′) dλ′

(18)

where

σs(λ) = δ(λ − λ̄ + iµ/2) + δ(λ − λ̄ − iµ/2) (19)

is the density of the 2-string and̄λ = (λh
1 + λh

2)/2 is the centre of the string. We do not
repeat the calculation here. The excitation energy has the same form of equation (17). That
means that the direct contribution of the 2-string is exactly cancelled by the back flow of
the λ-sea induced by it. Even so, it does not mean that the two types of excitations are
degenerate. In fact, we can calculate the scattering matrices of the massive particles and
find that they are different for different types of excitation [12].

3. Zero temperature magnetization

We proceed by considering the magnetization of the system at zero temperature. When the
system is subjected to an external magnetic fieldH , the magnetic moments of the electrons
couple to this field. Because of the spin gap in the spin excitation spectrum, there must be
a critical fieldHc to flip the spins in the ground state. As we know, a singleλ-hole is only
a spin-12 object [13]. A spin flip must correspond to twoλ-holes. Then we have the critical
field as

Hc = 8Tk. (20)

WhenH exceeds the critical value,λ-holes around zero may be generated to compensate
the magnetic energy gain. No string presents at zero temperature because it contributes
higher magnetic energy. The density ofλ now satisfies

σB(λ) = N [a1(λ − f ) + a1(λ + f )] −
∫ π

−π

a2(λ − λ′)σB(λ′)θ(|λ′| − B) dλ′ (21)
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whereθ(x) is the step function. The spin-dependent part of the energy is

E(S) = D

∫ π

−π

[σB(λ)θ(|λ| − B) − σ0(λ)][2(λ − f ) − 2(λ + f ) − 2π + 2µ] dλ

−(1 − µ

π
)HS (22)

and the total spin (magnetization) is given by

S = 1

2

∫ B

−B

σB(λ) dλ. (23)

Through the Fourier transformation we rewrite equation (21) and equation (22) as

σB(λ) = σ0(λ) +
∫ B

−B

R(λ − λ′)σB(λ′) dλ′ (24)

E(S) =
∫ B

−B

4Tk cosh
π

µ
λσB(λ) dλ − (1 − µ

π
)HS (25)

with

R(λ) = 1

2π

∞∑
m=−∞

e−imλ sin((π − 2µ)m/2)

sin(πm/2) + sin((π − 2µ)m/2)
. (26)

For smallB � 1, near the onset of the magnetization, we can expand equation (23) by

S = σB(0)B + 1
6σ ′′

B(0)B3 + O(B5). (27)

We use the same procedure to iterate equation (24) and then substituteσB(λ) into
equation (25). After this we minimizeE(S) with respect toS to lead to

S/L = Hc√
2π

(
H − Hc

Hc

)1
2
[

1 + O

(
H − Hc

Hc

)]
. (28)

4. Thermodynamics

The thermodynamics of the present model can be constructed by the standard method
[14–16]. At finite temperature, theλ’s may take complex values which are grouped in
various strings. Ann-string is characterized by a common real abscissaλn,γ and an order
n:

λj
n,γ = λn,γ + i

µ

2
(n + 1 − 2j) j = 1, 2, . . . , n. (29)

Define the density ofn-strings and the density ofn-string holes asσn(λ) and σh
n (λ),

respectively. They satisfy the following integral equation:

N [an(λ − f ) + an(λ + f )] = σh
n (λ) +

∞∑
l=1

Anlσl(λ) (30)

Anl = [|l − n|] + 2[|l − n| + 2] + · · · + 2[l + n − 2] + [l + n] (31)

where [n] is an integral operator with the kernelan(λ). After some manipulations [12] we
get the integral equations forηn(λ) = σh

n (λ)/σn(λ) as

ln ηn = G[ln(1 + ηn+1) + ln(1 + ηn−1)]

ln η1 = −4Tk

T
cosh(πλ/µ) + G ln(1 + η2)

lim
n→∞{[n + 1] ln(1 + ηn) − [n] ln(1 + ηn+1)} = −2H

T
(32)
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whereG is an integral operator with the kernel

g(λ) = 1

2π

∞∑
m=−∞

e−imλ

2 cosh(µm/2)
. (33)

The free energy is given by

F = E0 − πLT 2

6
− T

∫ π

−π

dλ σ0(λ) ln[1 + η1(λ)] (34)

with σ0(λ) the density ofλ for the ground state andE0 a constant. Change the variable to
χ = (πλ/µ) and take the scaling limitµ → 0. We have

F = E0 − πLT 2

6
− 2TkT L

π

∫ ∞

−∞
coshχ ln[1 + η1(χ)] dχ. (35)

There have been a few studies in the literature [15, 16] on the asymptotic solution of
equation (32). We shall not specify it here. The final results in some special parameter
regions are summarized as follows:

4.1. T � H, T � Hc − H

In this region, the electrons are strongly coupled and most of the physical quantities have an
activation law via temperature. The associated magnetization, susceptibility per unit length
and specific heat are

S = LHc

4
√

π

(
T

Hc

)1
2

exp

[
−Hc − H

2T

] [
1 + 3T

4Hc
+ O

(
T 2

H 2
c

)]
(36)

χ = 1

8
√

π

(
Hc

T

)1
2

exp

[
−Hc − H

2T

] [
1 + 3T

4Hc
+ O

(
T 2

H 2
c

)]
(37)

C = π

3
T + Hc

8
√

π

(
T

Hc

)1
2
(

Hc − H

T

)2

× exp

[
−Hc − H

2T

] [
1 + 3T

4Hc
+ 2T

Hc − H
+ O

(
T 2

H 2
c

)]
. (38)

The square root law via temperature in the above equations cannot be deduced from the
perturbation theory.

4.2. T � H, |Hc − H | � T � Hc

In this region, the susceptibility and the specific heat per unit length are given by

χ = 1

4
√

π

(
Hc

T

)1
2
[

1

2
η

(
−1

2

)
+ 3

8
η

(
1

2

)
T

Hc
+ O

(
T 2

H 2
c

,
H − Hc

T

)]
(39)

C = π

3
T + 3Hc

8
√

π

(
T

Hc

)1
2
[
η

(
3

2

)
+ 15

4
η

(
5

2

)
T

Hc
− 1

6
η

(
−1

2

)
H − Hc

T

+ O

(
T 2

H 2
c

,
(H − Hc)

2

T 2
,
H − Hc

Hc

)]
(40)

with η(x) = (1 − 21−x)ζ(x), whereζ(x) is the Riemann zeta function. Note that when
H = Hc, there is a critical behaviourχ ∼ T − 1

2 , C ∼ T
1
2 asT → 0.
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4.3. T � H, Hc � H

In this region, the strong magnetic field destroys the spin gap seriously. Then the electrons
fall into the weak coupling regime. The susceptibility and the specific heat have the
following asymptotic forms:

χ(H, T ) = χ(H, 0) + απT 2

24H 2

{
ln−3(αH/Hc) + O

[
ln ln(αH/Hc)

ln4(αH/Hc)

]}
(41)

C(H, T ) = π

3
T

{
2 + α

8 ln2(αH/Hc)
+ O

[
ln ln(αH/Hc)

ln3(αH/Hc)

]}
(42)

whereα = 2(2e/π)
1
2 is a constant. It is clearly shown that the specific heat recovers the

linear dependence on the temperature.

5. Concluding remarks

In conclusion, we have established the exact solutions of the 1D electron model in the
strong coupling regime. The present model is just the anisotropic version of the backward
scattering model. Based on the Bethe ansatz equations, the spin excitations, the onset
magnetization at zero temperature and the thermodynamics for some parameter regions are
calculated. The results for the present model coincide very well with the predictions of the
renormalization group theory [6].
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